1 Deterministic Constrained Problems

Formally speaking, we consider the following convex constrained minimization problem

$$
\begin{equation*}
\min \{f(x): \quad x \in X \subset E, \quad g(x) \leq 0\} \tag{1}
\end{equation*}
$$

In this section, we consider problem (1) in two different settings, namely, nonsmooth Lipschitz-continuous objective function f and general objective function f, which is not necessarily Lipschitz-continuous, e.g. a quadratic function. In both cases, we assume that g is non-smooth and is Lipschitz-continuous

$$
\begin{equation*}
|g(x)-g(y)| \leq M_{g}\|x-y\|_{2}, \quad x, y \in X \tag{2}
\end{equation*}
$$

Let x_{*} be a solution to (1). We say that a point $\tilde{x} \in X$ is an ε-solution to (1) if

$$
\begin{equation*}
f(\tilde{x})-f\left(x_{*}\right) \leq \varepsilon, \quad g(\tilde{x}) \leq \varepsilon \tag{3}
\end{equation*}
$$

The methods we describe are based on the of Polyak's switching subgradient method [4] for constrained convex problems, also analyzed in [3], and Mirror Descent method originated in [2]; see also [1].

1.1 Convex Non-Smooth Objective Function

In this subsection, we assume that f is a non-smooth Lipschitz-continuous function

$$
\begin{equation*}
|f(x)-f(y)| \leq M_{f}\|x-y\|_{2}, \quad x, y \in X \tag{4}
\end{equation*}
$$

Let x_{*} be a solution to (1) and assume that we know a constant $\Theta_{0}>0$ such that

$$
\begin{equation*}
\frac{1}{2}\left\|x_{0}-x_{*}\right\|_{2}^{2} \leq \Theta_{0}^{2} \tag{5}
\end{equation*}
$$

Theorem 1. Assume that inequalities (2) and (4) hold and a known constant $\Theta_{0}>0$ is such that $\frac{1}{2}\left\|x_{0}-x_{*}\right\|_{2}^{2} \leq \Theta_{0}^{2}$. Then, Algorithm 1 stops after not more than

$$
\begin{equation*}
k=\left\lceil\frac{2 \max \left\{M_{f}^{2}, M_{g}^{2}\right\} \Theta_{0}^{2}}{\varepsilon^{2}}\right\rceil \tag{6}
\end{equation*}
$$

iterations and \bar{x}^{k} is an ε-solution to (1) in the sense of (3).
Proof. First, let us prove that the inequality in the stopping criterion holds for k defined in (6). By (2) and (4), we have that, for any $i \in\{0, \ldots, k-1\}, M_{i} \leq$ $\max \left\{M_{f}, M_{g}\right\}$. Hence, by (6), $\sum_{j=0}^{k-1} \frac{1}{M_{j}^{2}} \geq \frac{k}{\max \left\{M_{f}^{2}, M_{g}^{2}\right\}} \geq \frac{2 \Theta_{0}^{2}}{\varepsilon^{2}}$.

```
Algorithm 1 Adaptive Subgradient Descent (Non-Smooth Objective)
Input: accuracy \(\varepsilon>0 ; \Theta_{0}\) s.t. \(\frac{1}{2}\left\|x_{0}-x_{*}\right\|_{2}^{2} \leq \Theta_{0}^{2}\).
    \(x^{0}=x_{0}\).
    Initialize the set \(I\) as empty set.
    Set \(k=0\).
    repeat
        if \(g\left(x^{k}\right) \leq \varepsilon\) then
                \(M_{k}=\left\|\nabla f\left(x^{k}\right)\right\|_{2}\),
            \(h_{k}=\frac{\varepsilon}{M_{k}^{2}}\)
            \(x^{k+1}=\pi_{X}\left(x^{k}-h_{k} \nabla f\left(x^{k}\right)\right)\) ("productive step")
            Add \(k\) to \(I\).
        else
            \(M_{k}=\left\|\nabla g\left(x^{k}\right)\right\|_{2}\)
            \(h_{k}=\frac{\varepsilon}{M_{k}^{2}}\)
            \(x^{k+1}=\pi_{X}\left(x^{k}-h_{k} \nabla g\left(x^{k}\right)\right)\) ("non-productive step")
        end if
        Set \(k=k+1\).
    until \(\sum_{j=0}^{k-1} \frac{1}{M_{j}^{2}} \geq \frac{2 \Theta_{0}^{2}}{\varepsilon^{2}}\)
Output: \(\bar{x}^{k}:=\frac{\sum_{i=l} h_{i} x^{i}}{\sum_{i \in l} h_{i}}\)
```

Denote $[k]=\{i \in\{0, \ldots, k-1\}\}, J=[k] \backslash I$. From main Lemma for subgradient descent, we have, for all $i \in I$ and all $u \in X$,

$$
h_{i} \cdot\left(f\left(x^{i}\right)-f(u)\right) \leq \frac{h_{i}^{2}}{2}\left\|\nabla f\left(x^{i}\right)\right\|_{2}^{2}+\frac{1}{2}\left\|x^{i}-u\right\|_{2}^{2}-\frac{1}{2}\left\|x^{i+1}-u\right\|_{2}^{2}
$$

and, for all $i \in J$ and all $u \in X$,

$$
h_{i} \cdot\left(g\left(x^{i}\right)-g(u)\right) \leq \frac{h_{i}^{2}}{2}\left\|\nabla g\left(x^{i}\right)\right\|_{2}^{2}+\frac{1}{2}\left\|x^{i}-u\right\|_{2}^{2}-\frac{1}{2}\left\|x^{i+1}-u\right\|_{2}^{2} .
$$

Summing up these inequalities for i from 0 to $k-1$, using the definition of $h_{i}, i \in$ $\{0, \ldots, k-1\}$, and taking $u=x_{*}$, we obtain

$$
\begin{align*}
& \sum_{i \in I} h_{i}\left(f\left(x^{i}\right)-f\left(x_{*}\right)\right)+\sum_{i \in J} h_{i}\left(g\left(x^{i}\right)-g\left(x_{*}\right)\right) \\
& \leq \sum_{i \in I} \frac{h_{i}^{2} M_{i}^{2}}{2}+\sum_{i \in J} \frac{h_{i}^{2} M_{i}^{2}}{2}+\sum_{i \in[k]}\left(\frac{1}{2}\left\|x^{i}-x_{*}\right\|_{2}^{2}-\frac{1}{2}\left\|x^{i+1}-x_{*}\right\|_{2}^{2}\right) \\
& \leq \frac{\varepsilon}{2} \sum_{i \in[k]} h_{i}+\Theta_{0}^{2} \tag{7}
\end{align*}
$$

Since, for $i \in J, g\left(x^{i}\right)-g\left(x_{*}\right) \geq g\left(x^{i}\right)>\varepsilon$, by convexity of f and the definition of \bar{x}^{k}, we have

$$
\begin{align*}
\left(\sum_{i \in I} h_{i}\right)\left(f\left(\bar{x}^{k}\right)-f\left(x_{*}\right)\right) & \leq \sum_{i \in I} h_{i}\left(f\left(x^{i}\right)-f\left(x_{*}\right)\right)<\frac{\varepsilon}{2} \sum_{i \in[k]} h_{i}-\varepsilon \sum_{i \in J} h_{i}+\Theta_{0}^{2} \\
& =\varepsilon \sum_{i \in I} h_{i}-\frac{\varepsilon^{2}}{2} \sum_{i \in[k]} \frac{1}{M_{i}^{2}}+\Theta_{0}^{2} \leq \varepsilon \sum_{i \in I} h_{i} \tag{8}
\end{align*}
$$

where in the last inequality, the stopping criterion is used. As long as the inequality is strict, the case of the empty I is impossible. Thus, the point \bar{x}^{k} is correctly defined. Dividing both parts of the inequality by $\sum_{i \in I} h_{i}$, we obtain the left inequality in (3).

For $i \in I$, it holds that $g\left(x^{i}\right) \leq \varepsilon$. Then, by the definition of \bar{x}^{k} and the convexity of g,

$$
g\left(\bar{x}^{k}\right) \leq\left(\sum_{i \in I} h_{i}\right)^{-1} \sum_{i \in I} h_{i} g\left(x^{i}\right) \leq \varepsilon .
$$

Let us now show that Algorithm 1 allows to reconstruct an approximate solution to the problem, which is dual to (1). We consider a special type of problem (1) with g given by

$$
\begin{equation*}
g(x)=\max _{i \in\{1, \ldots, m\}}\left\{g_{i}(x)\right\} \tag{9}
\end{equation*}
$$

Then, the dual problem to (1) is

$$
\begin{equation*}
\varphi(\lambda)=\min _{x \in X}\left\{f(x)+\sum_{i=1}^{m} \lambda_{i} g_{i}(x)\right\} \rightarrow \max _{\lambda_{i} \geq 0, i=1, \ldots, m} \varphi(\lambda) \tag{10}
\end{equation*}
$$

where $\lambda_{i} \geq 0, i=1, \ldots, m$ are Lagrange multipliers.
We slightly modify the assumption (5) and assume that the set X is bounded and that we know a constant $\Theta_{0}>0$ such that

$$
\max _{x \in X} \frac{1}{2}\left\|x_{0}-x\right\|_{2}^{2} \leq \Theta_{0}^{2}
$$

As before, denote $[k]=\{j \in\{0, \ldots, k-1\}\}, J=[k] \backslash I$. Let $j \in J$. Then a subgradient of $g(x)$ is used to make the j-th step of Algorithm 1. To find this subgradient, it is natural to find an active constraint $i \in 1, \ldots, m$ such that $g\left(x^{j}\right)=g_{i}\left(x^{j}\right)$ and use $\nabla g\left(x^{j}\right)=\nabla g_{i}\left(x^{j}\right)$ to make a step. Denote $i(j) \in 1, \ldots, m$ the number of active constraint, whose subgradient is used to make a non-productive step at iteration $j \in J$. In other words, $g\left(x^{j}\right)=g_{i(j)}\left(x^{j}\right)$ and $\nabla g\left(x^{j}\right)=\nabla g_{i(j)}\left(x^{j}\right)$. We define an approximate dual solution on a step $k \geq 0$ as

$$
\begin{equation*}
\bar{\lambda}_{i}^{k}=\frac{1}{\sum_{j \in I} h_{j}} \sum_{j \in J, i(j)=i} h_{j}, \quad i \in\{1, \ldots, m\} . \tag{11}
\end{equation*}
$$

and modify Algorithm 1 to return a pair $\left(\bar{x}^{k}, \bar{\lambda}^{k}\right)$.

Theorem 2. Assume that the set X is bounded, the inequalities (2) and (4) hold and a known constant $\Theta_{0}>0$ is such that $d\left(x_{*}\right) \leq \Theta_{0}^{2}$. Then, modified Algorithm 1 stops after not more than

$$
k=\left\lceil\frac{2 \max \left\{M_{f}^{2}, M_{g}^{2}\right\} \Theta_{0}^{2}}{\varepsilon^{2}}\right\rceil
$$

iterations and the pair $\left(\bar{x}^{k}, \bar{\lambda}^{k}\right)$ returned by this algorithm satisfies

$$
\begin{equation*}
f\left(\bar{x}^{k}\right)-\varphi\left(\bar{\lambda}^{k}\right) \leq \varepsilon, \quad g\left(\bar{x}^{k}\right) \leq \varepsilon \tag{12}
\end{equation*}
$$

Proof. From the main Lemma for one step of the subgradient descent, we have, for all $j \in I$ and all $u \in X$,

$$
h_{j}\left(f\left(x^{j}\right)-f(u)\right) \leq \frac{h_{j}^{2}}{2}\left\|\nabla f\left(x^{j}\right)\right\|_{2}^{2}+\frac{1}{2}\left\|x^{j}-u\right\|_{2}^{2}-\frac{1}{2}\left\|x^{j+1}-u\right\|_{2}^{2}
$$

and, for all $j \in J$ and all $u \in X$,

$$
\begin{aligned}
h_{j}\left(g_{i(j)}\left(x^{j}\right)-g_{i(j)}(u)\right) & \leq h_{j}\left\langle\nabla g_{i(j)}\left(x^{j}\right), x^{j}-u\right\rangle \\
& =h_{j}\left\langle\nabla g\left(x^{j}\right), x^{j}-u\right\rangle \\
& \leq \frac{h_{j}^{2}}{2}\left\|\nabla g\left(x^{j}\right)\right\|_{2}^{2}+\frac{1}{2}\left\|x^{j}-u\right\|_{2}^{2}-\frac{1}{2}\left\|x^{j+1}-u\right\|_{2}^{2}
\end{aligned}
$$

Summing up these inequalities for j from 0 to $k-1$, using the definition of h_{j}, $j \in\{0, \ldots, k-1\}$, we obtain, for all $u \in X$,

$$
\begin{aligned}
\sum_{j \in I} h_{j}\left(f\left(x^{j}\right)-f(u)\right) & +\sum_{j \in J} h_{j}\left(g_{i(j)}\left(x^{j}\right)-g_{i(j)}(u)\right) \\
& \leq \sum_{i \in I} \frac{h_{j}^{2} M_{j}^{2}}{2}+\sum_{j \in J} \frac{h_{j}^{2} M_{j}^{2}}{2}+\sum_{j \in[k]}\left(\frac{1}{2}\left\|x^{j}-u\right\|_{2}^{2}-\frac{1}{2}\left\|x^{j+1}-u\right\|_{2}^{2}\right) \\
& \leq \frac{\varepsilon}{2} \sum_{j \in[k]} h_{j}+\Theta_{0}^{2}
\end{aligned}
$$

Since, for $j \in J, g_{i(j)}\left(x^{j}\right)=g\left(x^{j}\right)>\varepsilon$, by convexity of f and the definition of \bar{x}^{k}, we have, for all $u \in X$,

$$
\begin{align*}
\left(\sum_{j \in I} h_{j}\right)\left(f\left(\bar{x}^{k}\right)-f(u)\right) & \leq \sum_{j \in I} h_{j}\left(f\left(x^{j}\right)-f(u)\right) \\
& \leq \frac{\varepsilon}{2} \sum_{j \in[k]} h_{j}+\Theta_{0}^{2}-\sum_{j \in J} h_{j}\left(g_{i(j)}\left(x^{j}\right)-g_{i(j)}(u)\right) \\
& <\frac{\varepsilon}{2} \sum_{j \in[k]} h_{i}+\Theta_{0}^{2}-\varepsilon \sum_{j \in J} h_{i}+\sum_{j \in J} h_{j} g_{i(j)}(u) \\
& =\varepsilon \sum_{j \in I} h_{j}-\frac{\varepsilon^{2}}{2} \sum_{j \in[k]} \frac{1}{M_{j}^{2}}+\Theta_{0}^{2}+\sum_{j \in J} h_{j} g_{i(j)}(u) \\
& \leq \varepsilon \sum_{j \in I} h_{j}+\sum_{j \in J} h_{j} g_{i(j)}(u), \tag{13}
\end{align*}
$$

where in the last inequality, the stopping criterion is used. At the same time, by (11), for all $u \in X$,

$$
\sum_{j \in J} h_{j} g_{i(j)}(u)=\sum_{i=1}^{m} \sum_{j \in J, i(j)=i} h_{j} g_{i(j)}(u)=\left(\sum_{j \in I} h_{j}\right) \sum_{i=1}^{m} \bar{\lambda}_{i}^{k} g_{i}(u) .
$$

This and (13) give, for all $u \in X$,

$$
\left(\sum_{j \in I} h_{j}\right) f\left(\bar{x}^{k}\right)<\left(\sum_{j \in I} h_{j}\right)\left(f(u)+\varepsilon+\sum_{i=1}^{m} \bar{\lambda}_{i}^{k} g_{i}(u)\right)
$$

Since the inequality is strict and holds for all $u \in X$, we have $\left(\sum_{j \in I} h_{j}\right) \neq 0$ and

$$
\begin{align*}
f\left(\bar{x}^{k}\right) & <\varepsilon+\min _{u \in X}\left\{f(u)+\sum_{i=1}^{m} \bar{\lambda}_{i}^{k} g_{i}(u)\right\} \\
& =\varepsilon+\varphi\left(\bar{\lambda}^{k}\right) \tag{14}
\end{align*}
$$

Second inequality in (12) follows from Theorem 1.

References

1. A. Ben-Tal and A. Nemirovski. Lectures on Modern Convex Optimization. Society for Industrial and Applied Mathematics, 2001.
2. A. Nemirovsky and D. Yudin. Problem Complexity and Method Efficiency in Optimization. J. Wiley \& Sons, New York, 1983.
3. Y. Nesterov. Introductory Lectures on Convex Optimization: a basic course. Kluwer Academic Publishers, Massachusetts, 2004.
4. B. Polyak. A general method of solving extremum problems. Soviet Mathematics Doklady, 8(3):593-597, 1967.
